Linear regression with sklearn
Using generated data
- examples/ml/basic_linear_regression.ipynb
- examples/ml/use_basic_linear_expression.ipynb
from joblib import load
import sys
if len(sys.argv) < 2:
exit(f"Usage: {sys.argv[0]} Xes")
input_values = []
for val in sys.argv[1:]:
input_values.append([float(val)])
model = load('linear.joblib')
print(model.predict(input_values))