1. Python Machine Learning
  2. Machine Learning
    1. Types of Machine Learning algorithms
    2. ML - Supervised Learning
    3. Regression problem
    4. Classification problem
    5. ML - Unsupervised Learning
    6. Linear regression with sklearn
    7. Split data set
    8. Food-truck linear regression
    9. Basic Classification example
    10. Kaggle
    11. Kaggle - USA housing listing
    12. Kaggle - Iris
  3. Machine Learning 2
    1. Number of features
    2. Linear regression
    3. Cost function
    4. Gradient descent
    5. Matrices
    6. Machine Learning - Multiple features
    7. Feature Scaling
    8. Gradient Descent - Learning Rate
    9. Features
    10. Polynomial Regression
    11. Normal Equation
    12. Multiple features
    13. Logistic regression (for classification)
    14. Multi-feature Classification (Iris)
    15. Kaggle - Melbourne housing listing
    16. Machine Learning Resources
    17. Regression Analyzis
    18. Classification Analysis
    19. Unbiased evaluation of a model
    20. Splitting data
    21. Model selection and validation
    22. K-fold valiadtion
    23. Learning Curves
    24. Hypermatameter tuning (optimization)
    25. The k-Nearest Neighbors (kNN)
    26. K-Means Clustering
    27. Boston housing prices
    28. Decision Tree
    29. Random Forrest
    30. Resnet 50