- 1. Python Machine Learning
- 2. Machine Learning
- 2.1. Types of Machine Learning algorithms
- 2.2. ML - Supervised Learning
- 2.3. Regression problem
- 2.4. Classification problem
- 2.5. ML - Unsupervised Learning
- 2.6. Linear regression with sklearn
- 2.7. Split data set
- 2.8. Food-truck linear regression
- 2.9. Basic Classification example
- 2.10. Kaggle
- 2.11. Kaggle - USA housing listing
- 2.12. Kaggle - Iris
- 3. Machine Learning 2
- 3.1. Number of features
- 3.2. Linear regression
- 3.3. Cost function
- 3.4. Gradient descent
- 3.5. Matrices
- 3.6. Machine Learning - Multiple features
- 3.7. Feature Scaling
- 3.8. Gradient Descent - Learning Rate
- 3.9. Features
- 3.10. Polynomial Regression
- 3.11. Normal Equation
- 3.12. Multiple features
- 3.13. Logistic regression (for classification)
- 3.14. Multi-feature Classification (Iris)
- 3.15. Kaggle - Melbourne housing listing
- 3.16. Machine Learning Resources
- 3.17. Regression Analyzis
- 3.18. Classification Analysis
- 3.19. Unbiased evaluation of a model
- 3.20. Splitting data
- 3.21. Model selection and validation
- 3.22. K-fold valiadtion
- 3.23. Learning Curves
- 3.24. Hypermatameter tuning (optimization)
- 3.25. The k-Nearest Neighbors (kNN)
- 3.26. K-Means Clustering
- 3.27. Boston housing prices
- 3.28. Decision Tree
- 3.29. Random Forrest
- 3.30. Resnet 50