- 1. Python Machine Learning
- 2. Machine Learning (ML)
- 2.1. Types of Machine Learning algorithms
- 2.2. Supervised Learning
- 2.3. Regression problem
- 2.4. Classification problem
- 2.5. Unsupervised Learning
- 2.6. Clustering vs classification
- 2.7. Reinforcement Learning (RL)
- 2.8. Linear regression with sklearn
- 2.9. Split data set
- 2.10. Polynomial Regression
- 2.11. Food-truck linear regression
- 2.12. Basic Classification example
- 2.13. California Housing prices
- 2.14. Kaggle
- 2.15. Kaggle - USA housing listing
- 2.16. Kaggle - Iris
- 2.17. Data Preprocessing
- 3. Machine Learning 2
- 3.1. Number of features
- 3.2. Linear regression
- 3.3. Cost function
- 3.4. Gradient descent
- 3.5. Matrices
- 3.6. Machine Learning - Multiple features
- 3.7. Feature Scaling
- 3.8. Gradient Descent - Learning Rate
- 3.9. Features
- 3.10. Normal Equation
- 3.11. Multiple features
- 3.12. Logistic regression (for classification)
- 3.13. Multi-feature Classification (Iris)
- 3.14. Kaggle - Melbourne housing listing
- 3.15. Machine Learning Resources
- 3.16. Regression Analyzis
- 3.17. Classification Analysis
- 3.18. Unbiased evaluation of a model
- 3.19. Splitting data
- 3.20. Model selection and validation
- 3.21. K-fold valiadtion
- 3.22. Learning Curves
- 3.23. Hypermatameter tuning (optimization)
- 3.24. The k-Nearest Neighbors (kNN)
- 3.25. K-Means Clustering
- 3.26. Boston housing prices
- 3.27. Decision Tree
- 3.28. Random Forrest
- 3.29. Resnet 50