1. Python Machine Learning
  2. Machine Learning (ML)
    1. Types of Machine Learning algorithms
    2. Supervised Learning
    3. Regression problem
    4. Classification problem
    5. Unsupervised Learning
    6. Clustering vs classification
    7. Reinforcement Learning (RL)
    8. Linear regression with sklearn
    9. Split data set
    10. Polynomial Regression
    11. Food-truck linear regression
    12. Basic Classification example
    13. California Housing prices
    14. Kaggle
    15. Kaggle - USA housing listing
    16. Kaggle - Iris
    17. Data Preprocessing
  3. Machine Learning 2
    1. Number of features
    2. Linear regression
    3. Cost function
    4. Gradient descent
    5. Matrices
    6. Machine Learning - Multiple features
    7. Feature Scaling
    8. Gradient Descent - Learning Rate
    9. Features
    10. Normal Equation
    11. Multiple features
    12. Logistic regression (for classification)
    13. Multi-feature Classification (Iris)
    14. Kaggle - Melbourne housing listing
    15. Machine Learning Resources
    16. Regression Analyzis
    17. Classification Analysis
    18. Unbiased evaluation of a model
    19. Splitting data
    20. Model selection and validation
    21. K-fold valiadtion
    22. Learning Curves
    23. Hypermatameter tuning (optimization)
    24. The k-Nearest Neighbors (kNN)
    25. K-Means Clustering
    26. Boston housing prices
    27. Decision Tree
    28. Random Forrest
    29. Resnet 50